Drosophila sodium channel mutations: Contributions to seizure-susceptibility.

نویسندگان

  • Jason R Kroll
  • Arunesh Saras
  • Mark A Tanouye
چکیده

This paper reviews Drosophila voltage-gated Na(+) channel mutations encoded by the para (paralytic) gene and their contributions to seizure disorders in the fly. Numerous mutations cause seizure-sensitivity, for example, para(bss1), with phenotypes that resemble human intractable epilepsy in some aspects. Seizure phenotypes are also seen with human GEFS+ spectrum mutations that have been knocked into the Drosophila para gene, para(GEFS+) and para(DS) alleles. Other para mutations, para(ST76) and para(JS) act as seizure-suppressor mutations reverting seizure phenotypes in other mutants. Seizure-like phenotypes are observed from mutations and other conditions that cause a persistent Na(+) current through either changes in mRNA splicing or protein structure.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Genetic modifications of seizure susceptibility and expression by altered excitability in Drosophila Na(+) and K(+) channel mutants.

A seizure-paralysis repertoire characteristic of Drosophila "bang-sensitive" mutants can be evoked electroconvulsively in tethered flies, in which behavioral episodes are associated with synchronized spike discharges in different body parts. Flight muscle DLMs (dorsal longitudinal muscles) display a stereotypic sequence of initial and delayed bouts of discharges (ID and DD), interposed with gia...

متن کامل

Genetic suppression of seizure susceptibility in Drosophila.

Despite the frequency of seizure disorders in the human population, the genetic and physiological basis for these defects has been difficult to resolve. Although many genetic defects that cause seizure susceptibility have been identified, the defects involve disparate biological processes, many of which are not neural specific. The large number and heterogeneous nature of the genes involved mak...

متن کامل

Mutations of the Calcium Channel Gene cacophony Suppress Seizures in Drosophila

Bang sensitive (BS) Drosophila mutants display characteristic seizure-like phenotypes resembling, in some aspects, those of human seizure disorders such as epilepsy. The BS mutant parabss1, caused by a gain-of-function mutation of the voltage-gated Na+ channel gene, is extremely seizure-sensitive with phenotypes that have proven difficult to ameliorate by anti-epileptic drug feeding or by seizu...

متن کامل

Metabolic disruption in Drosophila bang-sensitive seizure mutants.

We examined a number of Drosophila mutants with increased susceptibility to seizures following mechanical or electrical stimulation to better understand the underlying factors that predispose neurons to aberrant activity. Several mutations in this class have been molecularly identified and suggest metabolic disruption as a possible source for increased seizure susceptibility. We mapped the bang...

متن کامل

Seizure Suppression by shakB, a Gap Junction Connexin Mutation in Drosophila

Gap junction proteins mediate electrical synaptic transmission. In Drosophila, flies carrying null mutations in the shakB locus, such as shakB 2 , have behavioral and electrophysiological defects in the giant fiber (GF) system neurocircuit consistent with a loss of transmission at electrical synapses. The shakB 2 mutation also affects seizure-susceptibility. Mutant flies are especially seizure-...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Experimental neurology

دوره 274 Pt A  شماره 

صفحات  -

تاریخ انتشار 2015